A Beginner’s Guide To The General Number Field Sieve

نویسنده

  • Michael Case
چکیده

RSA is a very popular public key cryptosystem. This algorithm is known to be secure, but this fact relies on the difficulty of factoring large numbers. Because of the popularity of the algorithm, much research has gone into this problem of factoring a large number. The size of the number that we are able to factor increases exponentially year by year. This fact is partly due to advancements in computing hardware, but it is largely due to advancements in factoring algorithms. The General Number Field Sieve is an example of just such an advanced factoring algorithm. This is currently the best known method for factoring large numbers. This paper is a presentation of the General Number Field Sieve. It begins with a discussion of the algorithm in general and covers the theory that is responsible for its success. Because often the best way to learn an algorithm is by applying it, an extensive numerical example is included as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number field sieve

We describe the main ideas underlying integer factorization using the number field sieve.

متن کامل

A Description of the Number Field Sieve

The number field sieve is a relatively new method to factor large integers. Its most notable success is the factorization of the ninth Fermat number. It is significantly faster than all known existing integer factoring algorithms. We examine the theoretical underpinnings of the sieve; after understanding how it works, we state the algorithm. We look mostly to the algebraic number theory aspects...

متن کامل

Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method

In this paper, we describe many improvements to the number field sieve. Our main contribution consists of a new way to compute individual logarithms with the number field sieve without solving a very large linear system for each logarithm. We show that, with these improvements, the number field sieve outperforms the gaussian integer method in the hundred digit range. We also illustrate our resu...

متن کامل

Rotations and Translations of Number Field Sieve Polynomials

We present an algorithm that finds polynomials with many roots modulo many primes by rotating candidate Number Field Sieve polynomials using the Chinese Remainder Theorem. We also present an algorithm that finds a polynomial with small coefficients among all integral translations of X of a given polynomial in ZZ[X]. These algorithms can be used to produce promising candidate Number Field Sieve ...

متن کامل

The Number Field Sieve in the Medium Prime Case

In this paper, we study several variations of the number field sieve to compute discrete logarithms in finite fields of the form Fpn , with p a medium to large prime. We show that when n is not too large, this yields a Lpn(1/3) algorithm with efficiency similar to that of the regular number field sieve over prime fields. This approach complements the recent results of Joux and Lercier on the fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003